Organization of corticostriatal motor inputs in monkey putamen.

نویسندگان

  • Atsushi Nambu
  • Katsuyuki Kaneda
  • Hironobu Tokuno
  • Masahiko Takada
چکیده

To analyze the organization of corticostriatal motor inputs, we examined the neuronal responses in the putamen (Put) to stimulation in the primary motor cortex (MI) and the supplementary motor area (SMA). Stimulating electrodes were chronically implanted in the distal and proximal parts of the forelimb representation of the MI and in the forelimb representation of the SMA in Japanese monkeys (Macaca fuscata). Stimulation in the MI and SMA evoked orthodromic spike discharges in both phasically active and tonically active Put neurons. The latency of excitation evoked by MI stimulation was shorter than that of excitation evoked by SMA stimulation. Neurons responding exclusively to MI stimulation (MI-recipient neurons) and those responding exclusively to SMA stimulation (SMA-recipient neurons) were distributed predominantly in the ventrolateral and dorsomedial portion of the caudal aspect of the Put, respectively. About 20% of the recorded neurons responded concurrently to stimulation in both the MI and SMA (MI + SMA-recipient neurons). These neurons were located in the intermediate zone between the MI- and SMA-recipient zones. More than half of the Put neurons responded to sensorimotor stimulation. Movements of the forelimb were readily elicited by microstimulation in the MI-recipient zone, less frequently in the MI + SMA-recipient zone, and rarely in the SMA-recipient zone. More detailed analysis of the somatotopic arrangement based on cortical inputs, sensorimotor responses, and microstimulation-evoked movements revealed that within the MI- and MI + SMA-recipient zones of the Put, neurons representing the distal part of the forelimb were located more ventrally than those representing the proximal part. No such somatotopy was clearly detected in the SMA-recipient zone. The present results indicate that corticostriatal inputs from the forelimb regions of the MI and SMA are largely segregated. On the other hand, convergent inputs from the MI and SMA were noted on single neurons located at the junction between the two input zones. In addition, the corticostriatal inputs from the forelimb region of the MI exhibited a distal to proximal somatotopic organization along the ventrodorsal axis of the Put.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The organization of the human striatum estimated by intrinsic functional connectivity.

The striatum is connected to the cerebral cortex through multiple anatomical loops that process sensory, limbic, and heteromodal information. Tract-tracing studies in the monkey reveal that these corticostriatal connections form stereotyped patterns in the striatum. Here the organization of the striatum was explored in the human with resting-state functional connectivity MRI (fcMRI). Data from ...

متن کامل

Differential processing patterns of motor information via striatopallidal and striatonigral projections.

The functional loop linking the frontal lobe and the basal ganglia plays an important role in the control of motor behaviors. To delineate the principal features of motor information processing in the cortico-basal ganglia loop, the present study aimed at investigating how corticostriatal inputs from the primary motor cortex (MI) and the supplementary motor area (SMA) are transposed onto the pa...

متن کامل

Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey.

Antidromically identified neurons projecting to the putamen (CPNs) and pyramidal tract neurons (PTNs) were recorded from motor and premotor cortex of a monkey which performed a load-bearing task with the wrist. CPNs appeared as a uniform population with very slowly conducting axons and low spontaneous activity. In contrast to PTNs, they exhibited weak, mostly insignificant correlation with grad...

متن کامل

Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex.

Brain dopamine is implicated in the regulation of movement, attention, reward and learning. Dysfunction of dopamine plays a role in Parkinson's disease, schizophrenia and drug addiction. It is released in the striatum when dopamine neurons in the midbrain undergo burst firing. Several animal studies have shown that dopamine can also be released under direct control of glutamatergic corticostria...

متن کامل

Comparative diffusion tractography of corticostriatal motor pathways reveals differences between humans and macaques.

The primate corticobasal ganglia circuits are understood to be segregated into parallel anatomically and functionally distinct loops. Anatomical and physiological studies in macaque monkeys are summarized as showing that an oculomotor loop begins with projections from the frontal eye fields (FEF) to the caudate nucleus, and a motor loop begins with projections from the primary motor cortex (M1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2002